
® ~ © ~ 
Haptic Interfaces 

© ~ ® ~ 
Locomotion 

Assembly 

@-#L----JG e0irt 
Mechanisms 

Programmable Polarities: Actuating Interactive Prototypes with 
Programmable Electromagnets 

Martin Nisser Leon Cheng Yashaswini Makaram 
MIT CSAIL MIT CSAIL MIT CSAIL 

USA USA USA 
nisser@mit.edu leonc@mit.edu ymakaram@mit.edu 

Ryo Suzuki Stefanie Mueller 
University of Calgary MIT CSAIL 

Canada USA 
ryo.suzuki@ucalgary.ca stefanie.mueller@mit.edu 

ABSTRACT 
This demo introduces a framework that uses programmable elec-
tromagnets as a method to rapidly prototype interactive objects. 
Our approach allows users to to quickly and inexpensively embed 
actuation mechanisms into otherwise static prototypes in order to 
make them dynamic and interactive. Underpinning the technique 
is the insight of using electromagnets to interchangeably create 
attractive and repulsive forces between adjacent parts, and pro-
grammatically setting their polarities in a way that allows objects 
to translate rotationally and linearly, respond haptically, assemble, 
and locomote. 

CCS CONCEPTS 
• Human-centered computing → Human-computer interac-
tion. 
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1 INTRODUCTION 
While sensing techniques have been greatly advanced in recent 
years [10, 14, 18], enabling the actuation of prototypes using digital 
fabrication techniques poses several challenges to users in creating 
physically interactive objects [3]. 

When users build actuated devices today, they must integrate 
of-the-shelf actuators such as motors together with auxiliary com-
ponents such as gear transmissions and diverse electronics into 
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Figure 1: Design space for embedding actuation into pro-
totypes by leveraging inexpensive, programmable electro-
magnets. Application areas include: prototyping mechani-
cal haptic devices such as (A) push buttons, (B) linear sliders 
and (C) rotational toggles; locomotion in 1D by pivoting on 
(D) horizontal and (E) vertical surfaces or (F) in 2D across 
grids; self-assembly actuated (G) in 2D on air tables or bear-
ings, (H) in 3D in free space, or (I) stochastically; and cre-
ating modular mechanisms such as (J) rotational actuators 
with simple motors, (K) linear actuators with solenoids, and 
(L) complex mechanisms by kinematically chaining these. 

their designs. However, using of-the-shelf components limits the 
fexibility of the design by discretizing the design space around spe-
cifc sizes and shapes, and can be burdensome to learn to use. While 
recent research has tried to address these problems by integrating 
actuation into fabricated objects [1, 7, 9, 12], these mechanisms are 
still typically geometrically complex and bulky and must often be re-
placed entirely if the design scale changes—for example, demanding 
greater torque or motor ratings commensurate with enlargements 
of a design. Thus neither geometrical considerations nor electrical 
characteristics scale well for rapidly prototyping actuated devices. 

121

https://doi.org/10.1145/3474349.3480198
https://doi.org/10.1145/3474349.3480198
mailto:stefanie.mueller@mit.edu
mailto:ryo.suzuki@ucalgary.ca


UIST ’21, Oct 10–13, 2021, Virtual Nisser, Cheng, Makaram, Suzuki, and Mueller. 

In this demo, we address these problems by introducing a novel 
actuation mechanism that uses pairs of simple electromagnets (mag-
net wire wrapped around ferrite cores) to create instantaneous 
bonds and actuators between neighboring parts. We describe this 
mechanism, detail its construction, and explore its design space 
for rapidly prototyping a variety of mechanisms to imbue objects 
with interactivity through actuation. Finally, we present four demos 
from the design space: a linear push button, a rotational toggle, 1D 
horizontal locomotion, and 2D self-assembly. 

2 ELECTROMAGNETIC PROGRAMMABLE 
POLARITY: CONCEPT AND MECHANISM 

Programmable electromagnets have been explored in self recon-
fgurable robots. However, existing work utilizes these for linearly 
moving cubic blocks in two dimensions via sliding [2], constructing 
shapes through static bonds [4], or moving passive magnets on a 
2D surface [11, 15]. Our mechanism, in contrast, supports not only 
linear but rotational actuation. Their applications have also been ac-
tively explored in HCI literature for swarm user interfaces (Zooids 
[6], ShapeBots [17] and Hermits [8]), and for shape-changing inter-
faces (Cubimorph [13], Dynablock [16]). 

We build on the above by contributing a mechanism for both 
linear and rotational actuation that can be easily incorporated into 
existing objects to make them interactive. To do so, we use electro-
magnets (EM) together with permanent magnets (PM) to actuate 
mechanisms by programmatically creating repulsive or attractive 
forces between EMs and PMs embedded in neighboring objects. By 
polarizing magnet pairs oppositely, attractive forces can be used to 
create either hinges or rigid face-to-face bonds between adjacent 
objects. By identically polarizing EMs, repulsive forces can engen-
der rotational (pivots) or linear (translation) movements, with no 
need for mechanical attachments between individual modules. To-
gether, these can be used for locomotion, reconfguration, custom 
mechanisms and haptic feedback without moving parts. 

3 INTERACTIVE OBJECTS: DESIGN SPACE 

3.1 Programmable Haptics 
(1) Push Buttons (Fig 1A): EM pairs can form pushbuttons of 

variable stifness, proportional to the current applied (video). 
(2) Continuous sliders (Fig 1B): Sliders with variable stifness 

can be built by mounting EM pairs on rails. 
(3) Toggle switches (Fig 1C): EM pairs mounted on an axel 

can form rotary toggle switches (video). 

3.2 Locomotion 
(1) 1D Horizontal Locomotion (Fig 1D): Objects with reg-

ular polygonal cross-sections (squares, hexagons, circles) 
can locomote horizontally across the steps of a "ladder" of 
electromagnets in 1D (video). 

(2) 1D Vertical Locomotion (Fig 1E): Vertical/angled locomo-
tion can be performed By drawing larger currents. 

(3) 2D Locomotion on a grid (Fig 1F): With EMs in each edge, 
a cubic device can locomote across a square grid, or a tetra-
hedonal device across a triangular grid. 

Figure 2: Sample applications. (A) Self-assembly can be per-
formed via pivoting cubes using electromagnet pairs to cre-
ate attractive hinges and repulsive actuators. Locomotion is 
achieved by (B) embedding electromagnets in surfaces and 
polarizing them to (C) move magnetic structures. Mecha-
nisms that can be built include (D) linear push-buttons com-
prised of (E) simple solenoids, and (F) rotational toggles. 

3.3 Assembly 
(1) 2D Self-Assembly (Fig 1G): Objects with regular polygo-

nal cross-sections can assemble and reconfgure between 
shapes via pivoting (video). An accompanying UI helps with 
programming complex assemblies and previewing the steps 
necessary to make a desired confguration in hardware. 

(2) 3D Self-Assembly (Fig 1H): By sourcing more power, or 
exploiting microgravity, 3-dimensionally symmetric objects 
can reconfgure in 3D. 

(3) Stochastic Assembly (Fig 1I): In lieu of actuated pivoting, 
electromagnets in objects can also be pulsed to attract spe-
cifc neighours, such that objects moving stochastically can 
assemble into target confgurations over time. 

3.4 Mechanisms 
(1) Motors (rotational) (Fig 1J): EMs can be paired with other 

EMs or permanent magnets to form stators and rotors, form-
ing a brushed or brushless DC motor to actuate pure rotation. 

(2) Solenoids (linear) (Fig 1K): EMs can be paired with a 
spring loaded ferrite core, EM or permanent magnet to form 
a solenoid for linear translation (video). 

(3) Linkages (complex) (Fig 1L): Linear and rotary actuators 
can be combined with linkages to form more complex dy-
namical systems, as in Mechanism Perfboard [5]. 

4 SYSTEM AND IMPLEMENTATION 
Each electromagnet is comprised of 800 turns of 34 AWG magnet 
wire wound around a ferromagnetic core (fair-Rite 77) of 3.25mm 
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diameter, 55.5mm length and initial permeability (µi ) of 2000. Each 
actuator (core + winding) costs just $0.3. The circuitry for an un-
tethered device with N electromagnets consists of a microcontroller 
(Arduino Nano) integrated with a wireless transceiver (nRF24L01), 
a 11.1V battery source and N/2 full dual H-bridges. Combined, these 
allow bidirectional control of each electromagnet. Protoype struc-
tures are 3D printed from PLA using an Ultimaker 3. Lastly, our web 
simulation (video) was built using React, TypeScript, and Three.JS 
and can be viewed from a browser both locally or on the internet. 
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